Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Chembiochem ; 22(22): 3199-3207, 2021 11 16.
Article in English | MEDLINE | ID: covidwho-1406083

ABSTRACT

Site-specific protein modifications are vital for biopharmaceutical drug development. Gluconoylation is a non-enzymatic, post-translational modification of N-terminal HisTags. We report high-yield, site-selective in vitro α-aminoacylation of peptides, glycoproteins, antibodies, and virus-like particles (VLPs) with azidogluconolactone at pH 7.5 in 1 h. Conjugates slowly hydrolyse, but diol-masking with borate esters inhibits reversibility. In an example, we multimerise azidogluconoylated SARS-CoV-2 receptor-binding domain (RBD) onto VLPs via click-chemistry, to give a COVID-19 vaccine. Compared to yeast antigen, HEK-derived RBD was immunologically superior, likely due to observed differences in glycosylation. We show the benefits of ordered over randomly oriented multimeric antigen display, by demonstrating single-shot seroconversion and best virus-neutralizing antibodies. Azidogluconoylation is simple, fast and robust chemistry, and should accelerate research and development.


Subject(s)
Azides/chemistry , COVID-19 Vaccines/chemistry , Gluconates/chemistry , Glycine/chemistry , Histidine/chemistry , Lactones/chemistry , Vaccines, Virus-Like Particle/chemistry , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Azides/immunology , COVID-19 Vaccines/immunology , Gluconates/immunology , Glycine/immunology , Histidine/immunology , Humans , Lactones/immunology , Models, Molecular , Molecular Structure , Vaccines, Virus-Like Particle/immunology
2.
Exp Biol Med (Maywood) ; 246(7): 749-757, 2021 04.
Article in English | MEDLINE | ID: covidwho-1038455

ABSTRACT

Posttranslational modification of proteins, which include both the enzymatic alterations of protein side chains and main-chain peptide bond connectivity, is a fundamental regulatory process that is crucial for almost every aspects of cell biology, including the virus-host cell interaction and the SARS-CoV-2 infection. The posttranslational modification of proteins has primarily been studied in cells and tissues in an intra-proteomic context (where both substrates and enzymes are part of the same species). However, the inter-proteomic posttranslational modifications of most of the SARS-CoV-2 proteins by the host enzymes and vice versa are largely unexplored in virus pathogenesis and in the host immune response. It is now known that the structural spike (S) protein of the SARS-CoV-2 undergoes proteolytic priming by the host serine proteases for entry into the host cells, and N- and O-glycosylation by the host cell enzymes during virion packaging, which enable the virus to spread. New evidence suggests that both SARS-CoV-2 and the host proteins undergo inter-proteomic posttranslational modifications, which play roles in virus pathogenesis and infection-induced immune response by hijacking the host cell signaling. The purpose of this minireview is to bring attention of the scientific community to recent cutting-edge discoveries in this understudied area. It is likely that a better insight into the molecular mechanisms involved may open new research directions, and thereby contribute to novel therapeutic modality development against the SARS-CoV-2. Here we briefly discuss the rationale and touch upon some unanswered questions in this context, especially those that require attention from the scientific community.


Subject(s)
COVID-19/metabolism , COVID-19/virology , Host Microbial Interactions/physiology , Protein Processing, Post-Translational , Viral Proteins/metabolism , Glycosylation , Humans , Phosphorylation , Ubiquitin
SELECTION OF CITATIONS
SEARCH DETAIL